报告题目: An eco-epidemiological prey-predator model with infectious diseases in prey
时间:2023年9月20日15:00—16:00
地点:数学楼301
摘要: Eco-epidemiology has become a new interdisciplinary subject and is the frontier and hotspot of mathematical biology research so far. In this talk, we first formulate the basic eco-epidemiological model combining the SI epidemic model and the prey-predator model. Then study the ODE model, and diffusive model with the homogeneous Neumann and Dirichlet boundary conditions, respectively. For the ODE model and the diffusive model with the homogeneous Neumann boundary conditions, we give a complete conclusion about the stabilities of nonnegative equilibrium states (nonnegative constant equilibrium solutions). The results show that these two problems has no periodic solutions, and the diffusive model with the homogeneous Neumann boundary conditions has no yet Turing patterns. For the diffusive model with the homogeneous Dirichlet boundary conditions, we first establish the necessary and sufficient conditions for the existence of positive equilibrium solutions, and prove that the positive equilibrium solution is unique when it exists. Then we study the global asymptotic stabilities of trivial and semi-trivial nonnegative equilibrium solutions.
报告人简介:王明新,河南理工大学特聘教授,1994年起享受国务院政府特殊津贴。在Trans. Amer. Math. Soc.,Proc. London Math. Soc.,Indiana Univ. Math. J.,J. Math. Pures Appl.,Math. Models Meth. Appl. Sci., SIAM J. Math. Anal.,SIAM J. Appl. Math.,J. Funct. Anal., Calc. Var. Partial Differ. Equ., J. Differ. Equations,J. London Math. Soc.,Nonlinearity,J. Dyn. Diff. Equat.等刊物发表论文270余篇,科学出版社出版专著5本(4本独著,1本合著),高等教育出版社出版专著一本(独著),CRC出版社出版英文著作“Nonlinear Second Order Parabolic Equations”(独著),参与编写了科学出版社出版的“数学大辞典”(王元主编)和中国大百科全书,清华大学出版社出版教材4本。作为第一获奖人,获教育部自然科学二等奖、江苏省科技进步二等奖和教育部科技进步三等奖各1次,获河南省青年科技奖、江苏省首届青年科学家奖提名奖、江苏省优秀研究生指导教师和华英文化教育基金奖。主持完成国家自然科学基金项目10项,在研一项;主持完成省部级项目9项。