报告题目:On Frobenius-Perron dimension
报告时间:2023年7月7日下午15:00-16:00
报告地点:数学楼304
摘要:In this talk, we will propose a notion of Frobenius-Perron dimension for certain free Z-modules of infinite rank and compute it for the Z-modules of finite dimensional complex representations of unitary groups with nonnegative dominant weights. The definition of Frobenius-Perron dimension that we are introducing naturally generalizes the well-known Frobenius-Perron dimension on the category of finite dimensional complex representations of a finite group. We will also introduce some problems on the quantum cohomology of complex Grassmannians, which lead to our generalized notion of Frobenius-Perron dimension. This is my joint work with Ryan M. Shifler, Mingzhi Yang and Chi Zhang.
个人简介:李长征,中山大学教授、博士生导师。主持国家自然科学基金优秀青年基金及2项面上项目,并参与重点项目1项。主要研究Schubert分析、Gromov-Witten不变量理论与镜像对称猜想。2009年博士毕业于香港中文大学, 2009-2016年间曾分别在韩国高等研究院、日本东京大学Kavli IPMU、韩国基础科学研究所几何物理中心从事科研工作。部分研究成果发表在 Adv. Math.、Commun. Number Theory Phys.、Int. Math. Res. Not.、J.Diff. Geom.、J. Eur. Math. Soc.、Math. Ann.、Selecta Math.、Tran. Amer. Math. Soc.等数学国际期刊。