报告 1:A note on the BMO and Calder\'{o}n-Zygmund estimate
时间:2023.4.21 18:30-19:20
腾讯会议:984-562-656
摘要:In this talk, we give a simple poof of the W^{2,BMO} regularity for solutions of Poisson equation. Then the Calder\'{o}n-Zygmund estimate (W^{2,p} estimate) follows by the interpolation and duality. The highlight in this new method is the key observation that the W^{2,BMO} regularity is more similar to C^{k,a}regularity other than W^{2,p} regularity.
报告 2:Boundary regularity for elliptic equations
时间:2023.4.21 19:30-20:20
腾讯会议:984-562-656
摘要:In this talk, we introduce some boundary pointwise regularity results for elliptic equations, including boundary Holder regularity, boundary Lipschitz regularity, boundary C^{1,a} regularity and boundary C^{2,a} regularity etc. This talk is a combination of our several work in recent years.
报告人介绍:
张凯,上海交通大学博士后,研究方向:偏微分方程理论(主要是椭圆与抛物方程的正则性理论)。目前在椭圆型方程的边界正则性方向取得一系列研究成果,在Arch. Ration. Mech. Anal., Math. Ann., J. Math. Pures Appl., J. Differential Equations, Israel J. Math., Proc. AMS等期刊上发表学术论文10篇,主持国家自然科学基金青年项目、陕西省自然科学基金、博士后基金各一项。曾获得2019年陕西省优秀博士论文、陕西省数学会2019年青年教师优秀论文奖一等奖、2021年上海市超级博士后。