报告一:
报告题目:Asymptotic Analysis of the First Eigenvalue for Sturm-Liouville Problems with Applications (I)
报 告 人:綦建刚教授(山东大学)
报告时间:2022年9月8日 19:00-21:00
报告地点:腾讯会议 ID:455-490-733
报告摘要:This report is one of a series of reports on the spectral theory of Sturm-Liouville operators. In the first talk,the properties of the first eigenvalues for Sturm-Liouville problems is considered. The accurate asymptotic formula of the first eigenvalue on the ``jump set” is given. The results indicate that the asymptotic behaviors are only related to the values of the coefficients of the equation in the neighborhood of the end points.
报告二:
报告题目:Asymptotic Analysis of the First Eigenvalue for Sturm-Liouville Problems with Applications (II)
报 告 人:綦建刚教授(山东大学)
报告时间:2022年9月9日 19:00-21:00
报告地点:腾讯会议 ID:746-278-432
报告摘要:This report is one of a series of reports on the spectral theory of Sturm-Liouville operators. In the second talk,the application in biology mathematics of the first eigenvalues for Sturm-Liouville problems is discussed in detail. We discuss the monotonicity of the first eigenvalue with respect to parameters involved in both equations and boundary conditions. The infimum of the parameter which guarantee the monotonicity of the first eigenvalue is obtained.
报告人简介:綦建刚,理学博士,现为山东大学(威海)数学与统计学院常务副经理,教授,博士生导师,美国数学学会评论员。曾任宁波大学数学系系主任应用数学研究所副所长。2008年调入山东大学(威海)数学与统计学院。曾获得山东省高等学校优秀科研成果奖二等奖、山东省研究生优秀科技创新成果奖三等奖各一项。长期从事微分方程、边值问题、微分算子谱理论的相关研究,主持或完成国家自然科学基金面上项目、山东省自然科学基金面上项目、浙江省自然科学基金面上项目多项,作为主要参与者参与国家重点项目一项。在国内外权威期刊发表论文四十余篇。