报告题目:The K-amenability and higher index map for metric spaces with proper group actions
报 告 人:付本银副教授(上海立信会计金融学院)
报告时间:2021年11月24日 10:00-11:00
报告地点:腾讯会议 ID:620 823 778
主办单位:威廉希尔中文网站
报告摘要:I will talk about the K-amenability and the equivariant higher index map for the metric space with proper and isometrical group actions. More precisely, Let $\Gamma$ be a countable discrete amenable group, which acts properly and isometrically on a discrete metric space $X$ with bounded geometry. If the quotient space $X/\Gamma$ admits a coarse embedding into Hilbert space and the $\Gamma$-orbits in $X$ are uniformly equivariantly coarsely equivalent to each other, then the equivariant coarse Baum--Connes conjecture holds for $(X, \Gamma)$. Along the way, we prove a $K$-theoretic amenability statement for the $\Gamma$-space $X$ with the same assumptions as above, i.e. the canonical quotient map from the maximal equivariant Roe algebra of $X$ to the reduced equivariant Roe algebra of $X$ induces an isomorphism on $K$-theory. This is joint work with Deng Jintao and Wang Qin.
报告人简介:付本银,上海立信会计金融学院副教授,研究方向为非交换几何,在Communications in Mathematical Physics, Journal of Functional Analysis, 中国科学等国内外重要期刊发表多篇学术论文,主持完成国家自然科学基金青年项目一项,目前正主持国家自然科学基金面上项目一项。